The series admits a closed form in terms of the poly-Stieltjes constants.
Proposition. Let $$S=\sum_{n=2}^{\infty}\frac{\ln(n+1)}{n^2-1}.$$
Then
$$
\bbox[15px,border:1px solid orange]{S=\frac{\ln 2}4 -\frac{\gamma_1}2+\frac{\gamma_1\!\left(2,0\right)}2}\tag1
$$ where
$$
\begin{align}
&\gamma_1 = \lim_{N\to+\infty}\left(\sum_{n=1}^N \frac{\log n}{n}-\frac12 \log^2 \!N\right) \tag2\\
&\gamma_1(a,b) = \lim_{N\to+\infty}\left(\sum_{n=1}^N \frac{\log (n+a)}{n+b}-\frac12 \log^2 \!N\right). \tag3
\end{align}
$$
Proof. We have
$$
\begin{align}
&\sum_{n=2}^{\infty}\frac{\ln(n+1)}{n^2-1}\\
&=\frac12\lim_{N \to \infty}\left(\sum_{n=2}^N\frac{\ln{(n+1)}}{n-1}-\sum_{n=2}^N\frac{\ln{(n+1)}}{n+1}\right)\\
&=\frac12\lim_{N \to \infty}\left(\sum_{n=1}^{N-1}\frac{\ln{(n+2)}}n-\sum_{n=3}^{N+1}\frac{\ln{n}}{n}\right)\\
&=\frac12\lim_{N \to \infty}\left(\sum_{n=1}^{N-1}\frac{\ln{(n+2)}}n-\frac{\ln^2 N}2\right)-\frac12\lim_{N \to \infty}\left(\sum_{n=1}^{N+1}\frac{\ln{n}}{n}-\frac{\ln^2 N}2\right)+\frac{\ln 2}4\\
&=\frac12\gamma_1\!\left(2,0\right)-\frac12\gamma_1+\frac{\ln 2}4
\end{align}
$$ as announced.
Remark. Observe that $\gamma_1(0,0)$ is just $\gamma_1$, an ordinary Stieltjes constant.