-2

Find a solution $x$ of the system of four congruences

$X\equiv1\pmod{5}$

$X\equiv3\pmod{6}$

$ X\equiv5\pmod{11}$

$ X\equiv10\pmod{13}$

Alex M.
  • 35,207
Leon K
  • 79

1 Answers1

1

Let $$x = 5a +1$$ Now $$5a+1 = 3 \bmod 6 \implies 5a = 2 \bmod 6 \implies a = 4 \bmod 6 \implies x = 5(6b+4)+1 = 30b+21$$

Again $$30b+21 = 5 \bmod 11\implies 4b = 3 \bmod 11 \implies b = 9 \bmod 11 \implies x = 30(11c +9)+21 = 330c +291$$

Finally $$330c +291 = 10 \bmod 13 \implies c = 1 \bmod 13 \implies x = 330(13d+1)+291 = 4290d + 621 = 621 \bmod 4290$$

For a more direct approach, see https://en.wikipedia.org/wiki/Chinese_remainder_theorem#General_case

PTDS
  • 3,464