We know that principal value of the argument function of a complex number $z$ is defined as
$$\text{Arg} (z)=\begin{cases}
\arctan\left(\frac{\text{Im}(z)}{\text{Re}(z)}\right)&,\text{Re}(z)>0\\\\
\arctan\left(\frac{\text{Im}(z)}{\text{Re}(z)}\right)+\pi&,\text{Re}(z)<0,\,\text{Im}(z)\ge 0\\\\
\arctan\left(\frac{\text{Im}(z)}{\text{Re}(z)}\right)-\pi&,\text{Re}(z)<0,\,\text{Im}(z)< 0\\\\
\pi/2&,\text{Re}(z)=0,\,\text{Im}(z)> 0\\\\
-\pi/2&,\text{Re}(z)=0,\,\text{Im}(z)< 0\\\\
\end{cases}$$
The argument of $z$ is
$$\arg (z)=\text{Arg}(z)+2\ell \pi$$
for integer values of $\ell$.
Now, for $z=x+iy$ with fixed values of $x$ and $y$ and $n>-x$, we have
$$\begin{align}
\arg\left(\left(1+\frac zn\right)^n\right)&=\arg\left(\left(1+\frac xn+i\frac yn\right)^n\right) \tag 1\\\\
&=n\arctan\left(\frac{y/n}{1+x/n}\right)+2\ell \pi \tag 2\\\\
&\to y+2\ell \pi \,\,\text{as}\,\,n\to \infty \tag 3
\end{align}$$
Therefore, since $\cos (y+2\ell \pi)=\cos y$ and $\sin (y+2\ell \pi)=\sin y$, we have
$$\lim_{n\to \infty}\left(1+\frac zn\right)^n=e^x\left(\cos y+i\sin y\right)$$
as was to be shown!
NOTE $1$:
In going from $(1)$ to $(2)$, we made use inductively of the relationship
$$\arg(z^2)=2\arg(z)+2\ell \pi \tag 4$$
We can verify $(4)$ as follow. First, let $z=x+iy$. Then, for $x^2-y^2>0$, and $x>0$, we have
$$\begin{align}
\arg(z^2)&=\text{Arg}(z^2)+2\ell \pi\\\\
&=\arctan\left(\frac{2xy}{x^2-y^2}\right)+2\pi \ell\\\\
&=\arctan\left(\frac{2(y/x)}{1-(y/x)^2}\right)+2\pi \ell\\\\
&=2\arctan(y/x)+2\pi \ell\,\,\dots \,\text{where we used the double angle formula for the tangent}\\\\
&=2\arg(z)+2\ell \pi \tag 5
\end{align}$$
Now, let $z=\left(1+\frac xn\right)+i\left(\frac yn\right)$ in $(5)$. Then, for $n$ sufficiently large, $\left(1+\frac xn\right)^2-\left(\frac yn\right)^2>0$ and $1+\frac xn >0$, we find
$$\arg\left(z^2\right)=2\arg(z)+2\pi \ell$$
Proceeding inductively reveals that
$$\arg(z^n)=n\arg (z)+2\ell \pi$$
as was to be shown.
NOTE $2$:
In going from $(2)$ to $(3)$, we made use of THIS ANSWER, in which I established the inequalities for the arctangent function
$$\frac{|x|}{\sqrt{1+x^2}} \le|\arctan(x)|\le |x|$$
Then, we have
$$\left|\frac{\frac{y}{1+x/n}}{\sqrt{1+\left(\frac{y/n}{1+x/n}\right)^2}} \right|\le \left| n\arctan\left(\frac{y/n}{1+x/n}\right)\right| \le \left|\frac{y}{1+x/n}\right|$$
whereupon applying the squeeze theorem reveals the limit
$$\lim_{n\to \infty}n\arctan\left(\frac{y/n}{1+x/n}\right)=y$$
as was to be shown!