1

How to find the limit of $\frac{(-3)^n}{n!}$ when $n$ goes to $\infty$ by the squeeze theorem or any other method?

zhoraster
  • 25,481

3 Answers3

3

$\sum_{n=1}^\infty \frac{(-3)^n}{n!}$ converges because of the ratio test: $\lim_{n\to\infty}\left\lvert\frac{(-3)^{n+1}/(n+1)!}{(-3)^n/n!} \right\rvert = \lim_{n\to\infty}\left\lvert\frac{-3}{n+1}\right\rvert = 0 <1$. But this means that $\lim_{n\to\infty}\frac{(-3)^n}{n!} = 0$.

Claudius
  • 5,779
0

HINT:
$3^n\lt n!$ for sufficiently large $n$ and $\lim (-1)^n$ does not exist.

Bumblebee
  • 18,220
  • 5
  • 47
  • 87
0

Hint: For $n > 6$ we have that $\left|\frac{(-3)^n}{n!}\right| < \left|\frac{(-3)^6}{6!}\left(\frac{-1}{2}\right)^{n-6}\right|$. Now it's bounded by a sequence that you can show converges to $0$.

Luke
  • 395