I was trying to prove
$$\left|\int_{0}^{a}{\frac{1-\cos{x}}{x^2}}dx-\frac{\pi}{2}\right|\leq \frac{3}{a}$$ or $\leq \frac{2}{a}$. My work: I would like to use Fubini's theorem to prove it.
I notice that $\frac{1}{x^2}=\int^{\infty}_{0}{ue^{-xu}}du$.
Then, I got $\int_{0}^{a}{\frac{1-\cos{x}}{x^2}}dx=\int_{0}^{\infty}u\int_{0}^{a}{(1-\cos{x})e^{-xu}}dxdu$.
Then, I got $\int_{0}^{a}{(1-\cos{x})e^{-xu}}dx=-e^{-au}u+\frac{1}{u+u^3}+e^{-au}\frac{u^2\cos{a}-u\sin{a}}{u+u^3}$.
Then, $\int_{0}^{a}{\frac{1-\cos{x}}{x^2}}dx=\int_0^{\infty}u(\frac{e^{au}-1}{u}+\frac{u-e^{au}(u\cos{a}+\sin{a})}{1+u^2})du\\=\int_0^{\infty}({e^{au}+\frac{-ue^{au}(u\cos{a}+\sin{a}-2)}{1+u^2}})du+\frac{\pi}{2}.$
I was trying to show $|\int_0^{\infty}({e^{au}+\frac{-ue^{au}(u\cos{a}+\sin{a}-2)}{1+u^2}})du|\leq\frac{3}{a}$ or $\frac{2}{a}$.
But I do not have a clue. Can some give me hints?