Let $f(x)$ be a probability density function, i.e $f(.) \geq 0$ and $\int_{\mathbb{R}}f(x) \ dx=1$. Let $I_{n,k}= \big[\frac{k}{n}, \frac{k+1}{n}\big), \ k \in \mathbb{Z}$ and $p_{n,k}$ denote the area of $f(.)$ in the interval $I_{n,k}$, i.e, $$ p_{n,k}=\int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x) \ dx $$
We know that $\displaystyle \sum_{k \in \mathbb{Z}} p_{n,k}=1=\displaystyle \sum_{k \in \mathbb{Z}} p_{n,k+1}$. Define $\{a_{n,m}\}$ as the convolution of $\{p_{n,k}\}$ with itself, $$ a_{n,m}=\displaystyle \sum_{k \in \mathbb{Z}} \ p_{n,m-k} \ p_{n,k} $$
I am trying to prove that $\sum_{m \in \mathbb{Z}}|a_{n,m+1}-a_{n,m}| \rightarrow 0$ as $n \rightarrow \infty$
Is this true ? Atleast intuitively I feel that as our partitions become smaller and smaller difference should converge because $\{a_m\}$ is also a probability distribution on integers.