Let $\{W_t\}_{t\ge0}$ be standard Wiener process. Show that process $\{Y_t\}_{t\ge0}$ defined below
$$Y_t:=\int_0^t W_s ds$$
satisfies the condition $\mathbb{E}Y_t^3=0$.
Firstly, I calculate
$$d(W_t^3)=3W_t^2dW_t+3W_tdt$$
So:
$$Y_t=\frac{1}{3}W_t^3-\int_0^tW_s^2dW_s$$
And:
$$\mathbb{E}Y_t^3=\mathbb{E}\left(\frac{1}{27}W_t^9\right)-\mathbb{E}\left(3\cdot \frac{1}{9}W_t^6 \int_0^tW_s^2dW_s\right)+\mathbb{E}\left(\frac{1}{3}W_t^3 \left(\int_0^tW_s^2dW_s\right)^2\right)-\mathbb{E}\left(\int_0^tW_s^2dW_s\right)^3$$
I know $\mathbb{E}\left(\frac{1}{27}W_t^9\right)$ is equal to $0$, but how to deal with the rest?