Compute the set of convergence of the following sum $$\sum_{n=1}^{\infty}\frac{(-1)^n3^nz^{2n+1}}{2n+1}$$
Ok, so I defined my
$$ a_k = \begin{cases} \frac{(-1)^n3^n}{2n+1} & \quad \text{if } k=2n+1\\ 0 & \quad \text{otherwise } \\ \end{cases} $$
So I can calculate easily my radius of convergence as
$$\limsup|a_k|^{1/k}=\limsup \left| \frac{(-1)^n3^n}{2n+1} \right|^{1/n}=3^{1/2}$$
And therefore $\rho = 1/\sqrt{3}$
Everything cool until now.. When I get a $z \in \Bbb{C}$ such that $|z|=1/\sqrt{3}$ I don't know how to manipulate my series as to bound my partial sums and use Dirichlet's Criteria! What should I do!