I have to show that for $f \in C_{2\pi}$ and $b_{n}$ Fourier coefficient the following holds:
$$\sum_{n=1}^{\infty} \dfrac bn=\dfrac 1{2\pi}\int_{0}^{2\pi} (\pi-x)f(x)dx - (1)$$
I have used for $g(x)=(\pi-x)=2\sum_{n=1}^{\infty} \dfrac {\sin(nx)}n$ for every $x \in (0,2\pi)$.
After substituting I have:
$$\dfrac 1\pi \int_{0}^{2\pi} \sum_{n=1}^{\infty} \dfrac{\sin(nx)}n f(x)dx$$
My question is can I interchange integral with sum now by using Fubini Theorem to obtain: $$\sum_{n=1}^{\infty} \dfrac 1n \dfrac 1{\pi} \int_{0}^{2\pi} \sin(nx) f(x)dx$$