Let $S$ be a semigroup that satisfies the property \begin{align*} \forall a \in S, \quad aS=S \wedge Sa=S. \end{align*}
I want to show that $S$ is a group, ie, that $S$ satisfies
(1) $\exists e \in S \quad \forall a \in S : \quad ea=ae=a$;
<p>(2) $\forall a \in S \quad \exists b \in S : \quad ab=ba=e$.</p>
However, I can only show that
(1') $\exists e \in S \quad \forall a \in S : \quad ea=a$;
(2') $\forall a \in S \quad \exists b \in S : \quad ba=e$.
With what I've shown, is it possible to state that $S$ is a group?