If we define the sequence $x_n$ through the recurrence relationship $x_{n+1}=\sqrt{6+x_n}$. There are three cases for values of $x_1$.
CASE $1$: $x_1=3$
Obviously, if $x_1=3$, then $x_n=3$ for all $n>1$.
CASE $2$: $-6\le x_1<3$
If $-6\le x_1<3$, then it is easy to see inductively that $0<x_{n}<3$ for all $n > 1$. Additionally, it is easy to see that $x_{n+1}-x_n=\sqrt{6+x_n}-x_n=\frac{(3-x_n)(2+x_n)}{\sqrt{6+x_n}+x_n}>0$ and thus $x_n$ increases monotonically. Therefore we have
$$\lim_{n\to \infty}x_{n+1}=\lim_{n\to \infty}x_n=\sqrt{6+\lim_{n\to \infty}x_n}\implies \lim_{n\to \infty}x_n=3$$
CASE $3$: $3<x_1$
If $3<x_1$, then it is easy to see inductively that $0<x_{n}>3$ for all $n\ge 1$. Additionally, it is easy to see that $x_{n+1}-x_n=\sqrt{6+x_n}-x_n=\frac{(3-x_n)(2+x_n)}{\sqrt{6+x_n}+x_n}<0$ and thus $x_n$ decreases monotonically.
Therefore we have $$\lim_{n\to \infty}x_{n+1}=\lim_{n\to \infty}x_n=\sqrt{6+\lim_{n\to \infty}x_n}\implies \lim_{n\to \infty}x_n=3$$