If $p$ is a prime other than $2$ or $5$, show that $p$ divides infinitely many numbers of the form:
$11, 111, 1111, 11111, 111111, 1111111,\dots $
Hint: Consider the multiplicative order of $10\pmod p$.
If $p$ is a prime other than $2$ or $5$, show that $p$ divides infinitely many numbers of the form:
$11, 111, 1111, 11111, 111111, 1111111,\dots $
Hint: Consider the multiplicative order of $10\pmod p$.