I would like to prove that the two algebras $\mathfrak{su}(2)$ and $\mathfrak{sl}(2,\mathbb R)$ are not isomorphic as Lie algebras.
I started considering the following basis for $\mathfrak{su}(2)$: \begin{equation} \sigma_1=\frac{1}{2} \begin{pmatrix} i &0\\ 0 &-i\\ \end{pmatrix} \quad \sigma_2=\frac{1}{2} \begin{pmatrix} 0 &i\\ i &0\\ \end{pmatrix} \quad \sigma_3=\frac{1}{2} \begin{pmatrix} 0 &-1\\ 1 &0\\ \end{pmatrix} \end{equation} and for $\mathfrak{sl}(2,\mathbb R)$: \begin{equation} A_1=\frac{1}{2} \begin{pmatrix} 1 &0\\ 0 &-1\\ \end{pmatrix} \quad A_2=\frac{1}{2} \begin{pmatrix} 0 &1\\ 0 &0\\ \end{pmatrix} \quad A_3=\frac{1}{2} \begin{pmatrix} 0 &0\\ 1 &0\\ \end{pmatrix} \end{equation} It is possible to check that for the $\sigma$s the following commutation relation holds: \begin{equation} [\sigma_i,\sigma_j]=\epsilon_{ijk}\sigma_k. \end{equation} While if we consider: \begin{equation} [A_1,A_2]=A_2 \end{equation} Then it seems that I can't find any isomorphism between these 2 basis. Now I would like to generalize the argument to every basis, does anyone have any idea on how to proceed?