I need clarification in understanding all solutions of $Ax=0$ in parametric vector form where the $A$ is row equivalent to the given matrix.
Matrix $A$ $$\begin{bmatrix} 1 & -4 & -2 & 0 & 3 & -5 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
The augmented matrix of $A$ $$ \left[ \begin{array}{cccccc|c} 1 & -4 & -2 & 0 & 3 & -5 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 0 & 1 & -4 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right] $$
The Reduced Echelon Form $A$
$$ \left[ \begin{array}{cccccc|c} 1 & -4 & 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 0 & 1 & -4 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right] $$
$x_1 = 4x_2 -9x_6 \\ x_2 is free \\ x_3 = 1x_6 \\ x_4 is free\\ x5 = 4x_6\\x_6 is free $
Which simplifies to
$x = $$\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5\\ x_6 \end{bmatrix}$ = $x_2$$\begin{bmatrix} 4\\ 1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}$ + $x_6$$\begin{bmatrix} -9\\ 0\\ 1\\ 0\\ 4\\ 1 \end{bmatrix}$
Any help is appreciated! Please accept or reject the my solution to this equation and clarify mistakes (if any) that I have made.