Consider the sequences $a_n=n^2$, $b_n=\frac{1}{n}$, $c_n=\frac{\alpha}{n^2}$, and $d_n=\frac{1}{n^3}$.
Now, $$\lim_{n\rightarrow\infty}a_n=\lim_{n\rightarrow\infty}n^2=\infty,$$
$$\lim_{n\rightarrow\infty}b_n=\lim_{n\rightarrow\infty}\frac{1}{n}=0,$$
$$\lim_{n\rightarrow\infty}c_n=\lim_{n\rightarrow\infty}\frac{\alpha}{n^2}=0,$$
$$\lim_{n\rightarrow\infty}d_n=\lim_{n\rightarrow\infty}\frac{1}{n^3}=0.$$
Therefore, we can think of $\lim_{n\rightarrow\infty} a_nb_n$ as $0\times\infty$ (and similarly for the others).
However, each of these products has a different answer
$$\lim_{n\rightarrow\infty}a_nb_n=\lim_{n\rightarrow\infty}n=\infty,$$
$$\lim_{n\rightarrow\infty}a_nc_n=\lim_{n\rightarrow\infty}\alpha=\alpha,$$
$$\lim_{n\rightarrow\infty}a_nc_n=\lim_{n\rightarrow\infty}\frac{1}{n}=0.$$
The problem is that the speed at which these sequences approaches infinity or $0$ changes and the different limits represent how fast the sequences are blowing up or approaching zero.