0

Integrate $$ \int_{1}^{\mathrm{e}}\exp\left(\frac{x^{2} - 1}{2}\right) \left[{1 \over x} + x\log\left(x\right)\right]\mathrm{d}x $$

I am unable to understand which property to use. Comment on the technique used and help understand how to proceed with such.

Thanks in advanceĀ !.

Felix Marin
  • 89,464
gaufler
  • 1,871

4 Answers4

1

HINT:

$$\dfrac{d(e^{x^2/2})}{dx}=x\cdot e^{x^2/2}\implies\int x\cdot e^{x^2/2}\ dx= e^{x^2/2}$$

Use Integration by parts

1

By Parts $$\int \frac{e^{\frac{x^2-1}{2}}}{x}dx=e^{\frac{x^2-1}{2}}lnx-\int e^{\frac{x^2-1}{2}}xlnx\:dx$$

Ekaveera Gouribhatla
  • 13,026
  • 3
  • 34
  • 70
1

$$\int_{1}^{e}e^{\frac{x^2-1}{2}}\left(\frac{1}{x}+x\log x\right)\,dx = \int_{0}^{1}e^{\frac{e^{2u}-1}{2}}\left(1+ u e^{2u}\right)\,du=\left.u\cdot e^{\frac{e^{2u}-1}{2}}\right|_{0}^{1}.$$

Jack D'Aurizio
  • 353,855
1

Remark that $$\int e^{\left(\frac{x^{2}-1}{2}\right)} \left(\frac{1}{x}+x\log{x}\right) dx= \int e^{g(x)}[f'(x) + g'(x)f(x)] dx$$ with $f(x)=\log x$ and $g(x)=(\frac{x^{2}-1}{2}).$

So according the the formula $$\int e^{g(x)}[f'(x) + g'(x)f(x)] dx = f(x) e^{g(x)}+C$$ we have
$$\int e^{(\frac{x^{2}-1}{2})}\lgroup \frac{1}{x}+x\log{x}\rgroup dx =f(x)e^{g(x)} = -(\log x)e^{(\frac{x^{2}-1}{2})}+C.$$ Therefore $$\int_{1}^{e}e^{\frac{x^2-1}{2}}\left(\frac{1}{x}+x\log x\right)\,dx=[-(\log x)e^{(\frac{x^{2}-1}{2})}]_{1}^{e}=e^{(\frac{e^{2}-1}{2})}$$

For the proof of the formula one can see:

Proof for formula $\int e^{g(x)}[f'(x) + g'(x)f(x)] dx = f(x) e^{g(x)}+C$

Idris Addou
  • 4,193