Remark that $$\int e^{\left(\frac{x^{2}-1}{2}\right)} \left(\frac{1}{x}+x\log{x}\right) dx= \int e^{g(x)}[f'(x) + g'(x)f(x)] dx$$
with $f(x)=\log x$ and $g(x)=(\frac{x^{2}-1}{2}).$
So according the the formula $$\int e^{g(x)}[f'(x) + g'(x)f(x)] dx = f(x) e^{g(x)}+C$$
we have
$$\int e^{(\frac{x^{2}-1}{2})}\lgroup \frac{1}{x}+x\log{x}\rgroup dx =f(x)e^{g(x)} = -(\log x)e^{(\frac{x^{2}-1}{2})}+C.$$
Therefore
$$\int_{1}^{e}e^{\frac{x^2-1}{2}}\left(\frac{1}{x}+x\log x\right)\,dx=[-(\log x)e^{(\frac{x^{2}-1}{2})}]_{1}^{e}=e^{(\frac{e^{2}-1}{2})}$$
For the proof of the formula one can see:
Proof for formula $\int e^{g(x)}[f'(x) + g'(x)f(x)] dx = f(x) e^{g(x)}+C$