By considering $\sum_{r=1}^n z^{2r-1}$ where z= $\cos\theta + i\sin\theta$, show that if $\sin\theta$ $\neq$ 0, $$\sum_{r=1}^n \sin(2r-1)\theta=\frac{\sin^2n\theta}{\sin\theta}$$
I couldn't solve this at first but with some hints some of you gave, I was able to come up with my own solution. Here it is:
First, we want to consider what is given in the question, $$\begin{align} \sum_{r=1}^n z^{2r-1} & =z+z^3+z^5...\\ & = z + z(z^2)+z^3(z^2)+...\\ \end{align}$$ In Geometric Progression, sum is given by $$\sum_{r=1}^n z^{2r-1}=S_n = \frac{a (1-r^n)}{1-r}=\frac{z(1-(z^2)^n)}{1-z^2} = \frac {z-z^{2n+1}}{1-z^2}=\frac {1-z^{2n}}{z^{-1}-z} $$ Now, substitute $z = \cos \theta +i \sin \theta$
$$\begin{align} \sum_{r=1}^n z^{2r-1} & =\frac{1-(\cos (2n\theta) + i \sin(2n\theta))}{\cos\theta - i\sin\theta-(\cos\theta+i\sin\theta)} \\ & = \frac{1-\cos (2n\theta) - i \sin(2n\theta)}{-2i\sin\theta} \cdot \frac{(i\sin\theta)}{(i\sin\theta)}\\ & = \frac{i\sin\theta-i\sin\theta \cos (2n\theta) + \sin\theta \sin(2n\theta)}{2\sin^2\theta} \\ \end{align}$$ Equating imaginary parts, $$\sum_{r=1}^n \sin(2r-1)\theta = \frac{\sin\theta (1 - \cos(2n\theta))}{2\sin^2\theta} = \frac{\sin^2n\theta}{2\sin\theta} $$