$\qquad\qquad\qquad$ Does $~\displaystyle\lim_{n\to\infty}\frac{\sqrt n}{(-e)^n}\cdot\sum_{k=0}^n\frac{(-n)^k}{k!}~$ possess a closed form expression ?
Inspired by this frequently asked question, I wondered what would happen if the sum were allowed to alternate. Numerically, it seems to converge to a value around $~\dfrac15$ . Unfortunately, I wasn't truly able to grasp any of the various approaches used to evaluate the other related limit $($yes, I actually read carefully through all of them$)$, so I haven't been successful in developing a viable method for expressing this one either. $($Perhaps a new, insightful answer will also help me cast some fresh light on older ones ?$)$