I have been searching for a derivation of the defining property for the Dirac-delta function: $\displaystyle\int_{x=-\infty}^{x=\infty} f(x) \delta(x) \, \mathrm{d}x = f(0)$ and found this derivation on the first 2 pages:
Defining the Heaviside (step) function $H(x)$ as
$$H(x) = \begin{cases} 0 & \text{for } x \lt 0 \\1& \text{for } x \gt 0 \end{cases} $$ The derivative of the Heaviside function is zero for $x \ne 0$ and undefined for $x=0$ so the $\delta$ function can represent the derivative of the Heaviside function
$$\delta(x) = \begin{cases} 0 & \text{for } x \ne 0 \\\infty& \text{for } x = 0 \end{cases} $$ and $$\int_{x=-\infty}^{x=\infty} \delta(x) \, \mathrm{d}x=1$$
Let $f(x)$ be any continuous function that vanishes at $x=\pm\infty$ and integrating by parts
\begin{align} & \int_{x=-\infty}^{x=\infty} f(x)\delta(x) \, \mathrm{d}x = \color{green}{\left.\vphantom{\frac 1 1} f(x)H(x) \right|_{x=-\infty}^{x=\infty}} - \int_{\color{red}{x=-\infty}}^{x=\infty} f^\prime(x)H(x) \, \mathrm{d}x \\[10pt] = {} &0-\int_{\color{red}{x=0}}^{x=\infty} f^\prime(x)H(x) \, \mathrm{d}x= \left.\vphantom{\frac 1 1}-f(x) \right|_{x=0}^{x=\infty}=f(0) \end{align}
Could someone please explain how the limits marked $\color{red}{\mathrm{red}}$ were changed?
Thank you.
(and yes I know from last time, it's an abuse of notation placing the Dirac measure/distribution inside an integral)