Let $G$ be a group such that $(ab)^3=a^3b^3$ for all $a, b\in G$. Prove that $H=\{x^6\mid x \in G\}$ is a subgroup of $G$
Attempt:
$e=e^6$ i.e $e \in H\neq \phi$
Let $a,b\in H$ then $a=x^6, b=y^6$ for some $x, y\in G$
$$x, y\in G \implies (xy)^3=x^3y^3 \tag 1$$
Now $ab=x^6y^6$
How to show that $ab\in H$ and $a^{-1}=x^{-6}\in H$ using $(1)$.