Give an example of a series $\sum a_n$ that converges conditionally but $\sum a_n^3$ does not converge conditionally.
I've come up with an example.
$\frac{1}{\sqrt[3]2}-\frac{1}{2\sqrt[3]2}-\frac{1}{2\sqrt[3]2}+\frac{1}{\sqrt[3]3}-\frac{1}{3\sqrt[3]3}-\frac{1}{3\sqrt[3]3}-\frac{1}{3\sqrt[3]3}+\cdots$.
While the sum of the cubes is
$\frac{1}{2}-\frac{1}{8\cdot 2}-\frac{1}{8\cdot 2}+\frac{1}{3}-\frac{1}{27\cdot 3}-\frac{1}{27\cdot 3}-\frac{1}{27\cdot 3}+\cdots$
Now the series seems to converge to 0, however, I cannot show using an epsilon argument that it does. Also, the sum of the cubes looks like $\frac{1}{4}\cdot \frac{1}{2}+\frac{8}{9}\cdot \frac{1}{3}+ \frac{15}{16}\cdot \frac{1}{4}+\cdots$, so I can see that it diverges, but likewise, cannot supply this with a rigorous argument.
I would greatly appreciate it if anyone can help me with this part.