If $$C_1 = \{A \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \cdots\ \vert A \text{ is an open set in }\mathbb{R}\}$$ and $$C_2 = \{B \times \mathbb{R} \times \mathbb{R}\times \mathbb{R} \times \cdots \vert B \in \mathbb{B}(\mathbb{R})\}$$ where $\mathbb{B}(\mathbb{R})$ is the Borel $\sigma$-algebra on $\mathbb{R}$. It is very clear that $\sigma(C_1) = C_2$, but I am unable to prove it explicitly.
Thanks, rjp