Suppose $X$ is a random variable such that $E[|X|^p]<\infty$ is a function \begin{align} f(p)=E[|X|^p]^{1/p} \end{align} continuos function of $p$ for $1 \le p < \infty$.
Here is my attempt to show that the function is continuos as $c$. I tried to use $\epsilon-\delta$ definitions.
So, I want to show that for every $\epsilon>0$ there exists $\delta>0$ such that $|c-p| \le \delta$ implies \begin{align} |f(p)-f(c)| \le \epsilon. \end{align}
But I could'n get the above in the form
\begin{align} |f(p)-f(c)|=|E[|X|^p]^{1/p}-E[|X|^c]^{1/c}| \le K |c-p| \end{align} for some constant $K$. If I could do the above the rest would follow by picking $\delta=\frac{\epsilon}{K}$.
Thanks for any help
Edit Based on the suggestion by @Did
Let $q$ be a conjugate exponent of $p$ and $r$ be conjugate exponent of $c$ then
\begin{align} \left|||X||_p-||X||_c \right|&= \left| \sup_{Y: ||Y||_q \le 1}||XY||_1- \sup_{Y: ||Y||_r \le 1}||XZ||_1 \right|\\ & \le \sup_{Y: ||Y||_q \le 1}||XY||_1+ \sup_{Y: ||Y||_r \le 1}||XY||_1 \text{ by Triangle Inequality}\\ & \le 2\sup_{Y: ||Y||_{\max(q,r)} \le 1}||XY||_1 \text{ taking sup over the largest domain } \end{align}