I know about the following identity: $$\displaystyle \text{lcm} \left( {n \choose 0}, {n \choose 1}, ... {n \choose n} \right) = \frac{\text{lcm}(1, 2, ... n+1)}{n+1}$$ 1) Is there any method to find $$\displaystyle \text{lcm} \left( {n \choose 0}, {n \choose 1}, ... {n \choose k} \right)$$ for any $k \le n$ without evaluating all the binomial coefficients?
2)Let me define $$g(n,k)=\displaystyle \text k{n \choose k}$$ $$\displaystyle \text{lcm} \left( g(n,0), g(n,1), ... g(n,n) \right)=\text{lcm}(1, 2, ... n)$$ Can we find $$\displaystyle \text{lcm} \left( g(n,0), g(n,1), ... g(n,k) \right)$$ for any $k \le n$ ?
EDIT: $$\displaystyle \text{lcm} \left( {n \choose 0}, {n \choose 1}, ... {n \choose k} \right)=\frac{\text{lcm}(n-k+1,n-k+2, ... n+1)}{n+1}$$ $$\displaystyle \text{lcm} \left( g(n,0), g(n,1), ... g(n,k) \right)=\text{lcm}(n-k,n-k+1, ... n)$$