$\newcommand{\norm}[1]{\left \lVert #1 \right \rVert}$
$\newcommand{\abs}[1]{\lvert #1 \rvert}$
Since $\{f_n \}_{n \in \mathbb{N}}$ is Cauchy in $(W^*, \norm{\cdot}_*)$ ,
we have for each $x \in (W, \norm{\cdot})$
$$
|f_n(x)-f_m(x)| \le \norm{f_n-f_m}_* \norm{x} \to 0 \quad
\text{ as } m, n \to \infty.
$$
This means $\{ f_n(x) \}_{n \in \mathbb{N}}$ is Cauchy in $\mathbb{R}$ for any $x \in W$. Because $(\mathbb{R}, \abs{\cdot})$ is complete, we can define
$$
f(x) = \lim_{n \to \infty} f_n(x) \quad \forall x \in W.
$$
Clearly, $f$ is a linear functional. It remains to show $f$ is continuous (or, equivalently, bounded.)
Note that any Cauchy sequence is bounded under the same norm. We then have some $M < \infty$ such that
$$
\norm{f_n}_* \le M \quad \forall n \in \mathbb N. \tag{$\star$}
$$
Since $\abs{\cdot}$ is continuous in $(\mathbb R,\abs{\cdot})$, we have by ($\star$) that
$$
\abs{f(x)} = \abs{\lim_{n \to \infty} f_n(x)} = \lim_{n \to \infty} \abs{f_n(x)} \le M\norm{x} \quad \forall x \in W,
$$
proving continuity of $f$.