Three dice named A,B,C are thrown and the numbers shown on them are put for $a,b,c$ respectively in the quadratic equation $ax^2+bx+c=0$.What is the probability that the equation so formed will have real roots?
Since the roots are real.Therefore,$b^2\geq 4ac$
When $b=2$,then $a=1,c=1$;When $b=3$,then $a=2,c=1$;When $b=3$,then $a=1,c=1$
When $b=3$,then $a=1,c=2$;When $b=4$,then $a=2,c=2$;When $b=4$,then $a=1,c=4$
When $b=4$,then $a=4,c=1$;When $b=4$,then $a=1,c=3$;When $b=4$,then $a=3,c=1$
When $b=4$,then $a=1,c=2$;When $b=4$,then $a=2,c=1$;When $b=4$,then $a=1,c=1$
When $b=5$,then $a=2,c=3$;When $b=5$,then $a=3,c=2$;When $b=5$,then $a=5,c=1$
When $b=5$,then $a=1,c=5$;When $b=5$,then $a=2,c=2$;When $b=5$,then $a=3,c=1$
When $b=5$,then $a=1,c=3$;When $b=5$,then $a=2,c=1$;When $b=5$,then $a=1,c=2$
When $b=5$,then $a=1,c=1$;When $b=6$,then $a=3,c=3$;When $b=6$,then $a=2,c=4$
When $b=6$,then $a=4,c=2$;When $b=6$,then $a=2,c=3$;When $b=6$,then $a=3,c=2$
When $b=6$,then $a=5,c=1$;When $b=6$,then $a=1,c=5$;When $b=6$,then $a=2,c=2$
When $b=6$,then $a=3,c=1$;When $b=6$,then $a=1,c=3$;When $b=6$,then $a=2,c=1$
When $b=6$,then $a=1,c=2$;When $b=6$,then $a=1,c=1$
I have counted 35 cases and my probability is $\frac{35}{216}$,but in the book $\frac{43}{216}$ is the answer.
Which 8 cases i have left,i checked but could not find.Please help me.