Possible Duplicate:
Are isometric normed linear spaces isomorphic?
$ f: \mathbb{R}^n \to \mathbb{R}^m $ preserving distances
Consider the set of all functions $\varphi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ that preserve distance.
That is $\forall a,b : \| a-b\| = \|\varphi(a) - \varphi(b)\| $
Is the following statement true or false?
$\forall \varphi: \exists v \in \mathbb{R}^n, M \in \mathbb{R}^{n\times n}: \varphi(x) = Mx + v$
Why or why not? (ie rough sketch of proof)