Given $A, B \in \mathbb{R}^{n\times n}, t \in \mathbb{R}\setminus \{0\}$ with $b_{ij} = t^{i-j}\cdot a_{ij}$. Prove $\det(A) = \det(B)$.
I first thought of induction. I can easily prove this for $n \le 2$.
My induction hypothesis: $\det(A) = \det(B)$ with $A, B \in \mathbb{R}^{n\times n}$
Induction step: $\det(B) = \sum_{i=1}^{n+1} b_{ij} \cdot (-1)^{i+j} \cdot \det(B_{ij})\overset{IH}{=} \sum_{i=1}^{n+1} t^{i-j} a_{ij} \cdot (-1)^{i+j} \cdot \det(A_{ij})$
So far, so good, but I can't seem to get rid of the exponentiation of $t$. Any thoughts?