Use Schröder-Bernstein Theorem to show construct a bijection between $(0,1)$ and $(0,1]$
Let $f : (0,1) \rightarrow (0,1] $ be defined as $x \mapsto x$
and $g : (0,1] \to (0,1)$ be defined as $x \mapsto \frac{x}{2}$
The theorem states if we have two injective functions $f,g$ between sets then there exists a bijective function $h$ between them.
Define
$A^* \subset (0,1)$ to be $\{x \in (0,1) : x = \frac{p}{q} \,\&\, p = 1 \, \& \, q = 2^k, 1 \le k \} $ and
$ A' \subset (0,1) $ to be equal to $(0,1) \backslash A^*$
and
$B^* \subset (0,1]$ to be $\{x \in (0,1] : x = \frac{p}{q} \,\&\, p = 1 \, \& \, q = 2^j, 0 \le j \}$
$ B' \subset (0,1] $ to be equal to $(0,1] \backslash B^*$
Define $h : A \to B $ to be defined by $ h(x) \displaystyle \Bigg \{ \begin{array} x f(x) = x \,\, \text{if} \, x \in A' \\ g^{-1}(x) = 2x \, \text{if} \, x \in A^*\end{array} \\ $
So $A^* \cup A' = (0,1) \,\&\, B' \cup B^* = (0,1] \,\&\, A' \cap A^* = \emptyset \,\&\, B' \cap B^* = \emptyset $
and
$A^* \mapsto B^* \, \& \, A' \mapsto B'$