To prove it by that way is not enough. $a_n=\frac{1}{n}$ is but a special case, even if you show it works on $\frac{1}{n}$, the other possible $a_n$ is still undefined.
Since $\lim \limits_{n \to \infty} a_n=a>0$,
We take $\epsilon_0=\frac{1}{2} a>0$, then there is $N_0>0$, when $n>N_0$,
$$\frac{1}{2} a<a_n<\frac{3}{2}a.$$
Thus,
$$\sqrt[n]{\frac{1}{2} a}<\sqrt[n]{a_n}<\sqrt[n]{\frac{3}{2}a}.$$
(You can see the choice of $\epsilon_0$ is quite arbitrary.)
By squeeze theorem you can get the result.
P. S. Proposition: For any $c>0$, $\lim \limits_{n \to \infty} \sqrt[n] c=1$.
Proof: For $\epsilon>0$, assume that $c>1$.
$$\begin{align}
|\sqrt[n] c-1|<\epsilon &\Leftrightarrow \sqrt[n] c < 1+\epsilon \\
&\Leftrightarrow \frac{1}{n} \ln c < \ln (1+\epsilon) \\
&\Leftrightarrow n>\frac{\ln c}{\ln (1+\epsilon)}
\end{align}$$
Hence, take $N=\lceil \frac{\ln c}{\ln (1+\epsilon)} \rceil$, when $n>N$, $|\sqrt[n] c-1|<\epsilon$.
For $0<c<1$, the trick is similar.
If $\epsilon >1$, $|\sqrt[n] c-1|<\epsilon$ always holds.
If $0<\epsilon<1$, notice that $\ln c<0$, $\ln (1-\epsilon)<0$.
$$\begin{align}
|\sqrt[n] c-1|<\epsilon &\Leftrightarrow 1-\epsilon < \sqrt[n] c \\
&\Leftrightarrow \ln (1-\epsilon) < \frac{1}{n} \ln c\\
&\Leftrightarrow n>\frac{\ln c}{\ln (1-\epsilon)}
\end{align}$$
Hence, take $N=\lceil \frac{\ln c}{\ln (1-\epsilon)} \rceil$, when $n>N$, $|\sqrt[n] c-1|<\epsilon$.
From above we know
$$\lim \limits_{n \to \infty} \sqrt[n] c=1.$$