Can you show the steps followed for proving divergence or convergence
$\sum\limits_{n=1}^{\infty} $ $\sqrt[n]{n+(-1)^n}$
thankkss
Can you show the steps followed for proving divergence or convergence
$\sum\limits_{n=1}^{\infty} $ $\sqrt[n]{n+(-1)^n}$
thankkss
This series clearly diverges (or converges to infinity) since the necessary condition, that in $$ \sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}\sqrt[n]{n+(-1)^n} $$ the sequence $a_n$ is a zero-sequence, i.e. that $a_n\to 0$, is not fulfilled. Since $$ \sqrt[n]{n-1}\leq\sqrt[n]{n+(-1)^n}\leq\sqrt[n]{n+1} $$ and $$ \lim_{n\to\infty}\sqrt[n]{n-1}=\lim_{n\to\infty}\sqrt[n]{n+1}=1 $$
No because
$$ \sqrt[n]{n+(-1)^n}\rightarrow 1\neq 0.$$ You know that necessary condition(but not sufficient) for $\sum\limits_{n=1}^{\infty} a_n<\infty$ is $a_n\rightarrow 0$
HINT:
$n-1 \leq n+(-1)^n \leq n+1$