$\int_0^\frac{\pi}{2}\sin(\tan^{-1}x+x)~dx$
$=\int_0^\frac{\pi}{2}\sin\tan^{-1}x\cos x~dx+\int_0^\frac{\pi}{2}\cos\tan^{-1}x\sin x~dx$
$=\int_0^\frac{\pi}{2}\dfrac{x\cos x}{\sqrt{x^2+1}}~dx+\int_0^\frac{\pi}{2}\dfrac{\sin x}{\sqrt{x^2+1}}~dx$
$=\int_0^\frac{\pi}{2}\sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{2n}}{2(2n)!\sqrt{x^2+1}}~d(x^2+1)+\int_0^\frac{\pi}{2}\sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{2n+1}}{(2n+1)!\sqrt{x^2+1}}~dx$
$=\int_0^\frac{\pi}{2}\sum\limits_{n=0}^\infty\dfrac{(-1)^n(x^2+1-1)^n}{2(2n)!\sqrt{x^2+1}}~d(x^2+1)+\int_0^\frac{\pi}{2}\sum\limits_{n=0}^\infty\dfrac{(-1)^n(x^2+1-1)^n}{2(2n+1)!\sqrt{x^2+1}}~d(x^2+1)$
$=\int_0^\frac{\pi}{2}\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{C_k^n(-1)^{2n-k}(x^2+1)^k}{2(2n)!\sqrt{x^2+1}}~d(x^2+1)+\int_0^\frac{\pi}{2}\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{C_k^n(-1)^{2n-k}(x^2+1)^k}{2(2n+1)!\sqrt{x^2+1}}~d(x^2+1)$
$=\int_0^\frac{\pi}{2}\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!(x^2+1)^{k-\frac{1}{2}}}{2(2n)!k!(n-k)!}~d(x^2+1)+\int_0^\frac{\pi}{2}\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!(x^2+1)^{k-\frac{1}{2}}}{2(2n+1)!k!(n-k)!}~d(x^2+1)$
$=\left[\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!(x^2+1)^{k+\frac{1}{2}}}{2(2n)!k!(n-k)!\left(k+\dfrac{1}{2}\right)}\right]_0^\frac{\pi}{2}+\left[\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!(x^2+1)^{k+\frac{1}{2}}}{2(2n+1)!k!(n-k)!\left(k+\dfrac{1}{2}\right)}\right]_0^\frac{\pi}{2}$
$=\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!(\pi^2+2)^{k+\frac{1}{2}}}{2^{k+\frac{1}{2}}(2n)!k!(n-k)!(2k+1)}+\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!(\pi^2+2)^{k+\frac{1}{2}}}{2^{k+\frac{1}{2}}(2n+1)!k!(n-k)!(2k+1)}-\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!}{(2n)!k!(n-k)!(2k+1)}-\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!}{(2n+1)!k!(n-k)!(2k+1)}$