I was wondering if it is possible to build a Cauchy sequence that diverge. That is, a sequence $(x_n)\subseteq X$, for $(X,||\cdot||)$ normed space, such that
(1) $||x_n- x_m||\rightarrow 0$ for $n,m\rightarrow \infty$;
(2) $||x_n||\rightarrow +\infty$.
I think it is not possible. My "rough" idea is that taking $m=O(\log n)$ is pretty the same as fixing m and sending n to infinity. In this way we get a contradiction to Cauchy hypothesis: $$||x_n- x_m||+M\geq||x_n- x_m||+||x_m||\geq ||x_n||\rightarrow +\infty $$ where $M$ is a fixed scalar.
Can you help me formalising it? Or exibit me a counterexample?