How would you prove convergence/divergence of the following series?
$$\sum\limits_{n\geq 1}\dfrac{1}{(3n-1)(3n+1)}$$ I'm interested in more ways of proving convergence/divergence for this series.
My thoughts:
$$\sum\limits_{n\geq 1}\dfrac{1}{(3n-1)(3n+1)}$$
I'm going to use Integral Test
let $f(n)=\dfrac{1}{(3n-1)(3n+1)}$
we note that $f$ is a continuous, positive and decreasing function on the interval $[1,+\infty ($ then
$$\sum_{n=1}^\infty f(n) \text{ Convergent } \iff \int_1^\infty f(x)\,dx \text{ Convergent }$$
so let's try to compute $$\int_1^\infty f(n)\,dn=\int_1^\infty \dfrac{1}{(3n-1)(3n+1)}\,dn $$
Substitution for $n=\dfrac{1}{3}u$ and $dn=\dfrac{1}{3}du$ we got :
\begin{align} \int_1^\infty f(n)\,dn &=\int_1^\infty \dfrac{1}{(3n-1)(3n+1)}\,dn \\ &=\int_1^\infty \dfrac{1}{(3(\dfrac{1}{3}u)-1)(3(\dfrac{1}{3}u)+1)}\,\dfrac{1}{3}du \\ &=\dfrac{1}{3}\int_1^\infty \dfrac{1}{(u-1)(u+1)}\,du \\ &=\dfrac{1}{3}\int_1^\infty \dfrac{1}{(u^2-1)}\,du \\ \end{align} note that $\left(arctanh(u)\right)'=\left(\tanh^{-1}(h)\right)'=\dfrac{1}{1-u^{2}}$ so \begin{align} \int_1^\infty f(n)\,dn &=\dfrac{1}{3}\int_1^\infty \dfrac{1}{(u^2-1)}\,du \\ &=-\dfrac{1}{3}\int_1^\infty \dfrac{1}{(1-u^2)}\,du \\ &=-\dfrac{1}{3} \left(\tanh^{-1}(u)\right) \biggl|_{1}^{+\infty} \\ &=-\dfrac{1}{3} \left(\tanh^{-1}(3n)\right) \biggl|_{1}^{+\infty} \\ \end{align}
so can't go ahead beause i don't know the limit of $tanh^{-1}$ i can use woflrame to do that but suppose im in the contest what gonna do so my questions:
- Is my proof correct
- since the calculation is not easy in this case I'm interested in more ways of proving convergence/divergence for this series.