This is a follow up topic from this previous post.
The Fourier series for $f(x)=e^x$ is $$f(x)=e^x=\sinh1\left(1+2\sum_{n=1}^{\infty}\frac{(-1)^n}{(n\pi)^2+1}\left(\cos(n\pi x)-n\pi\sin(n\pi x)\right)\right)$$
The value of the Fourier series $f(x)=e^x$ at $x=2$ and $x=1$ are the same: $$f(2)=\sinh1\left(1+2\sum_{n=1}^{\infty}\frac{(-1)^{n}}{(n\pi)^2+1}\right)$$
$$f(0)=e^0=\sinh1\left(1+2\sum_{n=1}^{\infty}\frac{(-1)^{n}}{(n\pi)^2+1}\right)$$
Could someone please prove that $$\sinh1\Bigl(1+2{\sum}_{n=1}^{\infty}\frac{(-1)^{n}}{(n\pi)^2+1}\Bigr)=1?$$ The interval is $-1\lt x \lt 1$
Thank you.