$$\int\limits_0^{\frac \pi 2}\log \sin x dx$$
After applying ILATE integration did not solve. Please give hint
$$\int\limits_0^{\frac \pi 2}\log \sin x dx$$
After applying ILATE integration did not solve. Please give hint
$$I=\int\limits_0^{\frac \pi 2} \log \sin x dx\\\implies I=\int\limits_0^{\frac \pi 2} \log \cos x dx$$
Now, adding these two, we have, $$2I=\int\limits_0^{\frac \pi 2}\log \sin 2x dx -\int\limits_0^{\frac \pi 2}\log 2 dx$$.
Now, solve $$I'=\int\limits_0^{\frac \pi 2}\log \sin 2x dx$$.
HINT: put $2x=z$, and change the corresponding limits,It will look like $$I'=\frac 12\int\limits_0^{\pi}\log \sin z dz \implies \frac 12\int\limits_0^{2\frac {\pi}2}\log \sin z dz \implies \int\limits_0^{\frac \pi 2}\log \sin z dz \\\implies \int\limits_0^{\frac \pi 2}\log \sin x dx=I$$.
Now,can you do this?