I guess that if $s$ is positive odd integer, then Fourier series $$\sum_{n=1}^\infty \frac{\cos 2n\pi x}{n^{s+1}}$$ is a polynomial of degree $s+1$. For example, if $s=1$, then
$$\sum_{n=1}^\infty \frac{\cos 2n\pi x}{n^2} = c(x^2- x + \frac{1}{6})$$
If $s\geq 0$ is even integer, then Fourier series $$\sum_{n=1}^\infty \frac{\sin 2n\pi x}{n^{s+1}}$$ is a polynomial of degree $s+1$. For example, if $s = 0$, then $$\sum_{n=1}^\infty \frac{\sin 2n\pi x}{n} = c(x-\frac{1}{2})$$
I need your confirmation.