can you help me with this excercise.
Show using the definition of limit that
$$\lim_{ (x,y)\to(0,0)}\frac{ (1-\cos(xy))\sin y}{(x^2+y^2) }= 0$$
Definition of limit:
$\lim_{(x,y)\to(a,b)} f(x,y) =L$ if and only if for every $\epsilon >0$ exist $\delta>0$ such that if $\sqrt{(x-a)^2+(y-b)^2}<\delta$ then $|f(x,y)-L|<\epsilon$.
Hi I´ve tried this,
For taylor series.
Given $\epsilon>0$, find $\delta>0$ such that if
$$\sqrt{x^2+y^2}<\delta$$ then $$\bigg|\frac{(1-\cos xy)\sin y}{x^2+y^2}\bigg|<\epsilon$$ \begin{align*} \bigg|\frac{(1-\cos xy)\sin y}{x^2+y^2}\bigg| & = \bigg|\frac{(1-1-\frac{x^2y^2}{2}+\frac{x^4y^4}{24})(y-\frac{y^3}{6}+\frac{y^5}{120})}{x^2+y^2}\bigg|\\ & =\bigg|\frac{(-\frac{x^2y^2}{2}+\frac{x^4y^4}{24})(y-\frac{y^3}{6}+\frac{y^5}{120})}{x^2+y^2}\bigg| \end{align*}
Then what do I do?