Solve in $Z_{601}$ the following equation:
$327x + 208 = 0$
How do you solve this one ? I am clueless, I have searched everywhere and I cannot find a somewhat close solved example.
Solve in $Z_{601}$ the following equation:
$327x + 208 = 0$
How do you solve this one ? I am clueless, I have searched everywhere and I cannot find a somewhat close solved example.
We want to solve
$$\begin{align}327x &\equiv -208 \pmod {601}\\ &\equiv 393 \pmod{601}\end{align}$$
By using the extended euclidean algorithm one has
$$327 \cdot (533) + 601 \cdot (-290) = 1$$
or taking everything modulo $601$,
$$327 \cdot 533 \equiv 1 \pmod {601}$$
By the definition of inverse, $327^{-1} = 533$ (in $\mathbb{Z}_{601}$). Hence,
$$\begin{align}x &\equiv 393 \cdot 327^{-1} \pmod{601}\\ &\equiv 393 \cdot 533 \pmod{601}\\ &\equiv 321 \pmod {601}\end{align}$$
so we conclude that if $x$ gives a remainder of $321$ when divided by $601$, then it is a solution. Hence $x = 321 + 601n$ for $n \in \mathbb{Z}$.
You have to find the inverse of $327\bmod601$. This done done with the Extended Euclidean algorithm:
$$\begin{array}{l@{\qquad}rrrr} \hline \text{Successive Divisions}& r_i & u_i & v_i & q_i\\ & 601 & 0 & 1 & \\ 601= {\color{red}1} \times 327 +\color{blue}{274} & 327 &1 & 0 & \color{red}1 \\ 327 = {\color{red}1} \times 274 + \color{blue}{53} & \color{blue}{274} & -1 & 1 & \color{red}1 \\ \hline 274 = {\color{red}5} \times 53 + \color{blue}{9} & \color{blue}{53} & 2 & -1 & \color{red}5 \\ 53 = {\color{red}5} \times 9+ \color{blue}{8} & \color{blue}{9} & -11 & 6 & \color{red}5 \\ 9 = {\color{red}1} \times 8+ \color{blue}{1} & \color{blue}{8} & 57 & -31 & \color{red}1 \\ & \color{blue}{1} & -68 & 37& \\ \hline \end{array}$$ Thus we have the Bézout's relation: $\;-68\cdot327+37\cdot 601=1$, which implies $$327^{-1}\equiv -68\mod 601$$ and $$x=-327^{-1}\cdot 208=68\cdot208\equiv 321\mod 601.$$
Here is another implementation of the Euclidean Algorithm.
Using the Extended Euclidean Algorithm as implemented in this answer to solve $$ 327x+601y=\gcd(327,601) $$ we get $$ \begin{array}{r} &&1&1&5&5&1&8\\\hline 1&0&1&-1&6&-31&37&-327\\ 0&1&-1&2&-11&57&-68&601\\ 601&327&274&53&9&8&1&0 \end{array} $$ This says that $$ 601(37)+327(-68)=1 $$ which means that in $\mathbb{Z}_{601}$ $$ 327(-68)=1 $$ Multiply by $-208$ to get $$ 327(14144)=-208 $$ so the answer is $14144=321$ in $\mathbb{Z}_{601}$.