How many 4-digits number are a multiple of 3 but not of 11 and their digits sum is a perfect square?
If they are multiples of $3$, then their digit sum is one of $3,6,9,12,15,18,21,24,27, 30, 33, 36$.
If their digit sum is a perfect square, then their digit sum is one of $9, 36$. The only four-digit number with a digit sum of $36$ is $9999$, which is a multiple of $11$. So their digit sum must be $9$.
So we need to count the number of four-digit numbers whose digits sum to $9$. We can use the stars and bars method to find that number but we need to be careful. The binomial coefficient $\binom{n+k-1}{k-1}$ will count the number of k-tuples of non negative integers that sum to $n$. Except we want the first number in the 4-tuple to be positive.
We can get that number by computing $\binom{(n-1)+k-1}{k-1}$, the number of k-tuples of non negative integers that sum to $n-1$, and then adding $1$ to the first digit.
With $n=9$ and $k=4$, that gives us the number
$$\binom{11}{3} = 165$$
Are any of those $165$ numbers multiples of $11$? No. A digit sum of $9$ implies that such a number must be a multiple of $99$. If that number is $abcd_{10}$, then $ab_{10} + cd_{10}=99$. This implies that $a+b+c+d > 9$
Wolfram Alpha generated the list below with the request "positive four digit numbers whose digit sum is 9".
\begin{array}{c}
1008 & 1017 & 1026 & 1035 & 1044 & 1053 & 1062 & 1071 & 1080 \\
1107 & 1116 & 1125 & 1134 & 1143 & 1152 & 1161 & 1170 \\
1206 & 1215 & 1224 & 1233 & 1242 & 1251 & 1260 \\
1305 & 1314 & 1323 & 1332 & 1341 & 1350 \\
1404 & 1413 & 1422 & 1431 & 1440 \\
1503 & 1512 & 1521 & 1530 \\
1602 & 1611 & 1620 \\
1701 & 1710 \\
1800 \\
2007 & 2016 & 2025 & 2034 & 2043 & 2052 & 2061 & 2070 \\
2106 & 2115 & 2124 & 2133 & 2142 & 2151 & 2160 \\
2205 & 2214 & 2223 & 2232 & 2241 & 2250 \\
2304 & 2313 & 2322 & 2331 & 2340 \\
2403 & 2412 & 2421 & 2430 \\
2502 & 2511 & 2520 \\
2601 & 2610 \\
2700 \\
3006 & 3015 & 3024 & 3033 & 3042 & 3051 & 3060 \\
3105 & 3114 & 3123 & 3132 & 3141 & 3150 \\
3204 & 3213 & 3222 & 3231 & 3240 \\
3303 & 3312 & 3321 & 3330 \\
3402 & 3411 & 3420 \\
3501 & 3510 \\
3600 \\
4005 & 4014 & 4023 & 4032 & 4041 & 4050 \\
4104 & 4113 & 4122 & 4131 & 4140 \\
4203 & 4212 & 4221 & 4230 \\
4302 & 4311 & 4320 \\
4401 & 4410 \\
4500 \\
5004 & 5013 & 5022 & 5031 & 5040 \\
5103 & 5112 & 5121 & 5130 \\
5202 & 5211 & 5220 \\
5301 & 5310 \\
5400 \\
6003 & 6012 & 6021 & 6030 \\
6102 & 6111 & 6120 \\
6201 & 6210 \\
6300 \\
7002 & 7011 & 7020 \\
7101 & 7110 \\
7200 \\
8001 & 8010 \\
8100 \\
9000
\end{array}
ALSO
We can also consider counting all of the possible "patterns" of the form $[abcd]$, with $a \le b \le c \le d$, which we define to mean all of the possible four-digit numbers that can be formed using the digits $a,b,c,d$ such that the first digit is not a $0$. For example, the pattern $[0225]$ corresponds to the nine numbers $2025, 2052, 2205, 2250, 2502, 2520, 5022, 5202, 5220$.
\begin{array}{cccc|ccc}
\text{pattern} &&&& \text{count} & \dfrac{\#}{\text{count}} &\# \\
\hline
0009 & & & & 1 & 1 & 1 \\
0018 & 0027 & 0036 & 0045 & 4 & 6 & 24 \\
0117 & 0144 & 0225 & & 3 & 9 & 27 \\
0126 & 0125 & 0234 & & 3 & 18 & 54 \\
0333 & & & & 1 & 3 & 3 \\
1116 & 2223 & & & 2 & 4 & 8 \\
1125 & 1134 & 1224 & 1233 & 4 & 12 & 48 \\
\hline
& & & & & \text{TOTAL} & 165
\end{array}