1

How do I integrate the following function? $$\int_0^\frac{\pi}{4}\ln(\tan^2 x+1) \; dx$$

Dominik
  • 19,963

1 Answers1

1

$$\int_{0}^{\frac{\pi}{4}}\log(\tan^2(x)+1)\,dx = -2\int_{0}^{\frac{\pi}{4}}\log(\cos\theta)\,d\theta $$ then exploiting the Fourier expansion of $\log(\cos\theta)$ it follows that:

$$\int_{0}^{\frac{\pi}{4}}\log(\tan^2(x)+1)\,dx =\color{red}{-K+\frac{\pi}{2}\,\log 2}$$ where $K$ is Catalan's constant.

Jack D'Aurizio
  • 353,855