(A partial answer.) Compare the three cfracs of similar form,
$$H(q)=\frac{q^{1/2}\,\vartheta_3(0,q^2)}{\vartheta_2(0,q^2)}=\small\cfrac{(1+q^2)}{1-q+\cfrac{q(1+q^{-1})(1+q^3)}{1-q^3+\cfrac{q^2(1+q^0)(1+q^4)}{1-q^5+\cfrac{q^3(1+q)(1+q^5)}{1-q^7+\cfrac{q^4(1+q^2)(1+q^6)}{1-q^9+\ddots}}}}}\tag1$$
$$U(-q)\; =\; 1\;=\;\small\cfrac{(1+q^1)}{1-q+\cfrac{q(1+q^0)(1+q^2)}{1-q^3+\cfrac{q^2(1+q)(1+q^3)}{1-q^5+\cfrac{q^3(1+q^2)(1+q^4)}{1-q^7+\cfrac{q^4(1+q^3)(1+q^5)}{1-q^{9}+\ddots}}}}}\tag2$$
$$S(q) = \frac{1}{q^{1/2}}\frac{\vartheta_2(0,q^2)}{\vartheta_3(0,q^2)}=\small\cfrac{(1+q^0)}{1-q+\cfrac{q(1+q)(1+q)}{1-q^3+\cfrac{q^2(1+q^2)(1+q^2)} {1-q^5+\cfrac{q^3(1+q^3)(1+q^3)}{1-q^7+\cfrac{q^4(1+q^4)(1+q^4)} {1-q^9+\ddots}}}}}\tag3$$
where the pattern of one cfrac to the next is clear. We have $(1)$ as your proposed equality, $(2)$ is the one in this post (with the small change $q \to -q$ for aesthetics), and $(3)$ was established by Somos in A079006. One can then see the nice fact that,
$$H(q)\,U(-q)\,S(q) = 1$$
In fact, $H(q)$ and $S(q)$ are reciprocals. (This is the second reciprocal pair you have found after this, so I assume you are using a general method?)
P.S. Since $(2)$ belongs to an infinite family involving ratios of form $(1-aq^n)$, then $(1),(3)$ may have an infinite family as well.