Those two integrals
$$\displaystyle\int \sqrt{\sin \left( x\right) } dx$$ and $$\int ln \left( \sin \left( x\right) \right) dx$$ one of them known if it definite. The integration is
$$ \int \limits^{\pi }_{0}\sqrt{\sin \left( x\right) } dx = 2\sqrt{\frac{2}{\pi } } \Gamma \left( \frac{3}{4} \right) ^{2}$$
My question is how we can evaluate those two integrals in indefinite form? . Thanks

- 381
-
1According to WA, the first one cannot be written nicely (that $E$ that is used is more or less just a rephrasing of $\int \sqrt{\sin(x)}dx$). The second one actually gets some non-trivial work done, but it's still not very nice. – Arthur Sep 11 '15 at 12:42
-
@Arthur what does $E $ mean in the first integration? – Refaat Mohamed Sep 11 '15 at 12:47
-
http://mathworld.wolfram.com/EllipticIntegraloftheSecondKind.html – Arthur Sep 11 '15 at 12:48
-
Could you expand on how you calculated the definite one? – YoTengoUnLCD Sep 11 '15 at 12:50
-
@YoTengoUnLCD use this formula of beta function you will get it $$ \int \limits^{\frac{\pi }{2} }_{0}\sin ^{m+1}\left( x\right) \cos ^{n+1}\left( x\right) dx = \frac{1}{2} \beta \left( \frac{m}{2} , \frac{n}{2} \right) $$ – Refaat Mohamed Sep 11 '15 at 13:01
-
3The first is asked about here: http://math.stackexchange.com/questions/177709/indefinite-integral-of-sqrt-sin-x and the second here: http://math.stackexchange.com/questions/37829/computing-the-integral-of-log-sin-x – skyking Sep 11 '15 at 13:20
1 Answers
Given $\displaystyle \int\sqrt{\sin x}\;dx$
Let $\displaystyle \sin x = t^2\Leftrightarrow \cos xdx = 2tdt\Leftrightarrow dx = \frac{2t}{\sqrt{1-t^4}}dt$
So integral convert into $\displaystyle \int t.\frac{2t}{\left(1-t^4\right)^{\frac{1}{2}}}dt$
So Integral is $\displaystyle 2\int\;t^2.\left(1-t^4\right)^{-\frac{1}{2}}dt$
Now Using $\displaystyle \bullet\; \int x^m.\left(a+bx^n\right)^p\;dx$
where $m\;,n\;,p$ are Rational no.
which is Integrable only when $\displaystyle \left(\frac{m+1}{n}\right)\in \mathbb{Z}$ or $\displaystyle \left\{\frac{m+1}{n}+p\right\}\in\mathbb{Z}$
Now here $\displaystyle 2\int\;t^2.\left(1-t^4\right)^{-\frac{1}{2}}dt$
$\displaystyle m = 2\;\;,a = 1\;\;,b = -1\;\;,n = 4\;\;,p = -\frac{1}{2}$
and $\displaystyle \left(\frac{2+1}{4}\right)\neq \mathbb{Z}$ or $\displaystyle \left(\frac{2+1}{4}\right)-\frac{1}{2}\neq \mathbb{Z}$
So We can not integrate $\displaystyle \int\sqrt{\sin x}\;dx =2\int\;t^2.\left(1-t^4\right)^{-\frac{1}{2}}dt$ in terms of elementry function.

- 53,015
-
-
@user256952, apply integration by parts for the next one. It is a bit tedious approach, but I don't find any other way. It's easy. – Sep 11 '15 at 13:08