There is some sense in saying that the limit of $\ell^p$ norms
$\displaystyle \lim_{p \to \infty} \lVert x \rVert _p = \lVert x \rVert _{\infty}$
is uniform in $x$?
Maybe with this definition
$(\forall \varepsilon > 0)(\exists M>0)(\forall x \in \ell^q) \big( p>M \ \Longrightarrow \ | \ \lVert x \rVert_p - \lVert x \rVert_{\infty} \ | < \varepsilon \big)$
where $q \in [1, \infty)$ is fixed, and $p$ take values in $(q, \infty)$.
This is true? If not, someone have a counterexample?
Thanks