For the Jacobi theta function $\vartheta_3(z|\tau)$ there exists an equality (by Whittaker & Watson)
\begin{equation} \vartheta_3(z|\tau) = \sum_{n=-\infty}^{\infty} e^{n^2 \pi i \tau + 2 n i z} = \sqrt{\frac{1}{-i\tau}} \sum_{n=-\infty}^{\infty} e^{\frac{(z-n\pi)^2}{\pi i \tau}} \end{equation}
Is there something similar for this "modified version" of the Jacobi theta function?
$$\sum_{n=1}^{\infty} n\,e^{n^2 \pi i \tau}$$
I tried to use the relation shown above, but it results nothing.
Well, I got a relation for the $n^2$ case
$$\sum_{n=1}^{\infty} n^2\,e^{n^2 \pi i \tau}$$
I just 'broke' the sum into parts, $$\sum_{n=-\infty}^{-1} + \sum_{n=1}^{\infty}$$ remembering that $n=0$ contributes with nothing, than I took a derivative with respect to $\tau$ and set $z=0$. I got:
$$\sum_{n=1}^\infty n^2\,e^{n^2 \pi i \tau} = \frac{(-i\tau)^{-3/2}}{2\pi} \left(\frac{1}{2}+\sum_{n=1}^\infty e^{\frac{n^2\pi}{i\tau}}\right) - \pi (-i\tau)^{-5/2}\sum_{n=1}^\infty n^2\,e^{\frac{n^2\pi}{i\tau}}$$
It looks like equalities for $$\sum_{n=1}^\infty n^{2k}\,e^{n^2 \pi i \tau}, \quad k\in\mathbb{N}$$ are allways possible to get by 'recurrence'. The problem is with odd powers...