5

If here e is Euler then it is 2.718... but it couldn't be, the number being smaller every rows.

    0.000227202114952789
    0.000179517720456525
    0.000141841161842193
    0.000112072029109881
    8.85507390497816e-05
    6.99660160393339e-05
    5.52817904508328e-05
    4.36794393685600e-05
    3.45121496245415e-05
    2.72688589626009e-05
    2.15457651062528e-05
    1.70238144049402e-05
    1.34509150853849e-05
    1.06278835242547e-05
    8.39734006854666e-06
    6.63493536280223e-06
    5.24241806443641e-06
    4.14215748301150e-06
    3.27281578904617e-06
    2.58592852467836e-06
    2.04320278493094e-06
    1.61438244735281e-06
    1.27556143988364e-06
    1.00785101422911e-06
    7.96326727292046e-07
    6.29196426502324e-07
    4.97142855508031e-07
    3.92804231512548e-07
    3.10363837244451e-07
    2.45225747946181e-07
Daniel Fischer
  • 206,697
doci
  • 121

1 Answers1

11

In this case, the "$e$" in $2.45225747946181e-07$ indicates that the number coming immediately afterwards is the number of powers of $10$ that you would multiply $2.45225747946181$ by to get the number. So for example, $$2.45225747946181e-07 = 2.45225747946181 \cdot 10^{-07} = 0.000000245225747946181$$ $$2.45225747946181e-05 = 2.45225747946181 \cdot 10^{-05} = 0.0000245225747946181$$ $$2.45225747946181e-01 = 2.45225747946181 \cdot 10^{-01} = 0.245225747946181$$ $$2.45225747946181e 03 = 2.45225747946181 \cdot 10^{3} = 2452.25747946181$$ In this particular case, it has nothing to do with Euler's Constant. For more information, look at the Wikipedia article on Scientific Notation.