$$\Large{\lim_{x\to 0}\frac{7x^3-4x^2}{\sin(3x^2)}}$$
I know how to find this Limit only by using L’Hopital’s. Here's How:
$$={\lim_{x\to 0}\frac{7x^3-4x^2}{\sin(3x^2)}}$$
$$={\lim_{x\to 0}\frac{21x^2-8x}{6x\cos(3x^2)}}$$
$$={\lim_{x\to 0}\frac{x(21x-8)}{6x\cos(3x^2)}}$$
$$={\lim_{x\to 0}\frac{(21x-8)}{6\cos(3x^2)}}$$
$$=\frac{21\cdot 0 - 8}{6 \cos 0}$$
$$=\frac{-4}{3}$$
My Question is, is there a way to do this without using the L’Hopital’s? If so, How?
Also Note: We have not been taught the series expansion of $\sin x$.