4

How can you prove that $$ \lim_\limits{x \to \infty} x(\sqrt{x^2+1}-x) = \frac{1}{2} \text{ ?}$$

I can not find a way to calculate this.

This is one idea: $$ \lim_{x \to \infty} x(\sqrt{x^2+1}-x) \approx \lim_\limits{x \to \infty} x(\sqrt{x^2}-x) = 0 $$ but that is wrong.

1 Answers1

3

Hint: Here is another idea $$\lim_{x \to \infty} \frac{x (x^2 +1 - x^2)}{\sqrt{x^2 +1} + x} =\lim_{x \to \infty} \frac{x}{\sqrt{x^2 +1} + x} = \lim_{x \to \infty} \frac{1}{\sqrt{1 +\frac{1}{x^2}} + 1} = \ldots$$

Aaron Maroja
  • 17,571