How do I prove:
$ \sin^2 {2x} - \sin^2 {x} = \sin {3x}\sin {x} $
?
I'm lost
How do I prove:
$ \sin^2 {2x} - \sin^2 {x} = \sin {3x}\sin {x} $
?
I'm lost
LHS=$(\sin2x+\sin x)(\sin2x-\sin x )=2\sin\frac{3x}{2}\cos \frac x2.2\cos\frac{3x}{2}\sin \frac x2=\sin 3x\sin x$ =RHS
By complex numbers, setting $z=e^{ix}$ and omitting the common denominator $(2i)^2$: $$(z^2-z^{-2})^2-(z-z^{-1})^2=z^4+4+z^{-4}-z^2-4-z^{-2},$$ $$(z^3-z^{-3})(z-z^{-1})=z^4-z^2-z^{-2}+z^{-4}.$$