How do I evaluate this (find the sum)? It's been a while since I did this kind of calculus.
$$\sum_{i=0}^\infty \frac{i}{4^i}$$
How do I evaluate this (find the sum)? It's been a while since I did this kind of calculus.
$$\sum_{i=0}^\infty \frac{i}{4^i}$$
For $-1<x<1$, the series $\sum_{i=0}^{\infty}x^i$ converges absolutely to $\frac{1}{1-x}$ $$\sum_{i=0}^{\infty}x^i=\frac{1}{1-x}$$ Then \begin{align*} \sum_{i=0}^{\infty}ix^{i-1} &= \frac{d}{dx}\left(\frac{1}{1-x}\right)\\ &=\frac{1}{(1-x)^2}\\ \sum_{i=0}^{\infty}ix^i&=\frac{x}{(1-x)^2} \end{align*} Now, by plugging $x=1/4$ into the last equation, we have $$\sum_{i=0}^{\infty}\frac{i}{4^i}=\frac{1/4}{(1-1/4)^2}=\frac{4}{9}$$
Another approach is to write
$$\begin{align} \sum_{i=0}^{\infty}\frac{i}{4^i}&=\sum_{i=1}^{\infty}\frac{1}{4^i}\left(\sum_{j=1}^{i}1\right)\\\\ &=\sum_{j=1}^{\infty}\sum_{i=j}^{\infty}\frac{1}{4^i}\\\\ &=\sum_{j=1}^{\infty}\frac{1}{4^j}\frac{1}{1-\frac14}\\\\ &=\frac{1/4}{(1-\frac14)^2}\\\\ &=\frac49 \end{align}$$
Let me try.
Set $$S = \sum_{i\geq 0}\frac{i}{4^i}.$$
Then we have $$4S = \sum_{i \geq 0} \frac{i+1}{4^i} = \sum_{i\geq 0}\frac{i}{4^i} + \sum_{i\geq 0}\frac{1}{4^i} = S + \frac{1}{1-\frac{1}{4}}$$
So, $3S = \frac{4}{3}$. It implies that $$S = \frac{4}{9}.$$